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A pulse compression method is proposed to simulate the propagation of a pulse in
an inhomogeneous plasma. It allows very fast computations compared to the usual
time-dependent code. The characteristics as well as the limitations of this method are
discussed. In particular the phase shift of the pulse frequency components is analyzed
for different kinds of density profiles. The validity of using this method under typical
conditions in fusion plasmas is then discusseg 2001 Eisevier Science

1. INTRODUCTION

The propagation of electromagnetic waves ininhomogeneous plasmas is an active fie
research, in particular for diagnostics in thermonuclear fusion and ionosphere plasmas
The cold plasma approximation is usually used to describe wave propagation in s
media [2]. Under this cold plasma approximation and assuming stationary and inhor
geneous density, the one-dimensional (1D) propagation of a wave is then governed b
following time-dependent equation

[0 — €07 + whe(0)] E(X,1) =O. B

This equation is valid in unmagnetized plasmas as well as for the ordinary mode polariza
in magnetized plasmas. Analytical solutions can be obtained in the case of a homogen
plasma [3]. For the extraordinary mode one must solve a more complex set of equations
To simulate the propagation of a pulse in an inhomogeneous plasma, Eg. (1) has t
solved numerically [5]. Owing to the dependence on both variabéexlt, time-dependent

codes solving Eq. (1) require a long computation time. We propose here an alterna
method inspired by techniques used in electronic, photonic, and radar applications ce
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the pulse compression method. This method is based on the decomposition of a pul
the relevant set of monochromatic waves at different frequencies. Thus, a Fourier anal
of the phases (and the amplitudes in the presence of multidimensional effects) of th
successive waves contained in along wave train gives the same information as the equiv
pulse. The terminology of pulse compression is derived from the fact that the equivalent pt
is usually much shorter than the wave train with its successive frequencies. This aspectal
in particular improvement in the signal-to-noise ratio and thus in measurement precisi
More details about the technical aspects of the method can be found, for example
Ref. [6]. The pulse compression method has already been proposed for density measure
experiments in fusion plasmas [7]. For simplicity, only the case of the ordinary mo
polarization is presented in this paper but the proposed method can be similarly app
to the extraordinary mode. The principle of the pulse compression method is presente
Section 2. Section 3 is devoted to the evaluation of the phase needed to apply this metho
validity and its speed are discussed in Section 4 based on comparisons with atime-depet
code.

2. PRINCIPLE OF THE PULSE COMPRESSION METHOD

The pulse compression method relies on the fact that a pulse can be decomposed in
of discrete frequencies. Consider for simplicity a wave with a Gaussian envealep &f

Ei () = Eg € ko0 40/, (2)

wherekg is the wavenumber in vacuum amdis the width at half amplitude (defined as
amplitudee™1). The corresponding spectrum of this signal has also a Gaussian shape:

+o0 )
Sk = / £ 00e™ dx = Eg¥ L o Ti0-w]' .

—00

Each component of this spectrum is phase shifted after the pulse propagation in the pla:
If the phase (k) is known or computed for all components, an inverse fast Fourier transfor
(FFT) permits obtainment of the pulse after propagation in the plasina &t [8]:

+00
Ef(x) = 1 S(kye 1?0 ekx gk, (4)
27 J_ o
In the following the amplitude of the pulse after propagation will be normalized to the initi
amplitudeEy. This method implies that the phase shift for each frequency of the pulse
independent of time. It is valid as long as the temporal history of the signal propagat
is not affected by nonlinear temporal effects. The different models which can be usec
calculate the phase are presented in the next section.
To apply a numerical procedure, Eq. (4) has to be sampled:

Ef(X) = % Z S(kj)e Pt dkixgk. (5)
i=1

The parametefk is important for calculating the final pulse with sufficient accuracy. First
8k has to be small enough to allow a good definition ofkkkepectrum of the initial pulse.
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At least 20 components are typically needed to definihpectrum for a realistic pulse
used in fusion plasmas. The parametealso imposes the length of the spatial domain
in which the final signal is obtained:

2
L= 3K (6)

It is thus important to be sure that this length is larger than the equivalent path of the pt
in vacuum. In our procedure, we have chosen the center of the spatial domain as the o
so that this domain takes place fronl /2 up to+L /2. As the initial pulse is centered at
x = 0, the equivalent path of the pulse in vacuum must be smallerltii@rto avoid any
ambiguity. The equivalent path in vacuum covered by the pulse is then directly dedu
from the position of the reconstructed signal.

Another characteristic of this method is the number of paintsed for the FFT. First,
a standard zero padding technique is made to fix this number as a power of 2. And
number must be high enough to have sufficient accuracy in real space. Indeed, the s
stepéx is given by

X = —. ©)

In order to obtain good accuracy in the reconstructed signahas to be small compared
to the typical wavelength of this signal. In addition to needing a s#althis condition
requires a sufficient number of poirris

Consider for example an initial Gaussian pulse with a frequehey 60 GHz (or a
wavenumbertky = 125 rad cnt!) and a spectral widtthf = 4 GHz at amplitudes™?!
(which is equivalent to a spatial width of about 9.5 cm or a duration of the order of 0.31 n
Now we want to study by the pulse compression method the propagation of this puls
plasma. Two parameters have then to be defined: the wavenumbék steg the number
of pointsn used for the FFT. To avoid truncating effects, we define the Gaussian pu
spectrum up to an amplitude®. The width at amplitude™ is twice the one a¢™*. If we
choose 100 points to define the spectrum, the wavenumber step is then given by

2
Sk = iaf—167radm @)

with §f = 2Af/100= 80 MHz. The equivalent path in vacuum of the pulse has to b
smaller thant/8k, equal to abou2 m in this case (which is equivalent to a propagation
time of 6.6 ns). The number of pointsfor the FFT has then to be defined which fixes the
precision of the reconstructed signal. If we impose 100 points per wavelength (that is I
enough to have a good definition), the numbe&an be deduced from Eq. (7):

2r 1 27100
== - =7
skax ok - 000 ©

Finallynis chosen as the first power of 2 higher than 75,000, which give®'” = 131,072.
If we taken = 21¢ = 65,536, the precision will béx = 5.7 10-> m, which corresponds to
about 87 points per wavelength.
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3. MODELS FOR THE EVALUATION OF THE PHASE

The use of the pulse compression method requires evaluation of the phase shift fo
components of the pulse spectrum. In order to reduce the time of computation, it is |
portant to optimize the determination of the phase. We show in this section that differ:
models can be used depending on the characteristics of the medium. These models de
on the characteristics of the density profile. For monotonic and smooth profiles, the Wi
approximation allows an analytic expression of the phase. In the presence of density f
tuations with small amplitudes, it is also possible to obtain an analytic expression using
Born approximation. If the amplitude of the density fluctuations becomes strong, the ph
evaluation requires solving the Helmholtz equation.

3.1. WKB Approximation

In a homogeneous medium, the phase shift of a wave after a length patiiven by
2
¢(f)=?ﬂfNL, (10)

wherec is the velocity of the light in vacuumf the frequency of the wave, ard the
refractive index depending on the medium crossed. In the case of an inhomogeneous pls
the evaluation of the phase shift is more complicated and requires solving Eq. (1). Howe
in some cases, we can assume that the medium properties vary so slowly that it is pos
to define locally the wavenumber and the refractive index. This is the WKB approximatic
and the phase can be written as

L
s(f) =g / N (x) dx. (11)
c 0

It requires that the amplitude of the electric field varies very slowly compared to its phase
is often satisfied for a smooth density profile, except when the wave crosses a cutoff laye
aresonance [2]. For some applications, like reflectometry, which is a diagnostic for den:
profile measurements in fusion plasmas [9], the wave is reflected by a cutoff layer. In t
case, the WKB approximation is no longer valid in the cutoff-layer region. However if w
assume a linear density profile in this region, it is possible to express the electric field fr
the Airy functions [10] and the phase shift can be written [11] as

Xe(f
¢<f)=4if/ N dx— I, (12)
c Xo 2
wherexg andx.( f) are, respectively, the plasma-edge and cutoff-layer positions. In Eq. (1
the factor 2 introduced in the integral term is due to the return path of the wave. Moreo\
the term—zx/2 is induced by the reflection on the cutoff layer.
Let us consider an initial pulse with a Gaussian shape, a frequerey0 GHz, and a

spectrum width at half amplituda f = 5 GHz corresponding to a spatial width

Li=——=76cm (13)

In the following, we simulate the propagation of this pulse in homogeneous and unm
netized plasma characterized by a plasma frequefcy: 40 GHz. Assuming a path
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FIG. 1. Signal after propagation in a homogeneous plasma computed by the pulse compression method |
the WKB approximation.

length L = 10 m the phase shift for each component of the spectrum is evaluated
cording to Eq. (11). The final signal computed after FFT is represented in Fig. 1. T
position of this signak = 134 m agrees with the theoretical result and corresponds |
the path the pulse would have covered in vacuum (which is equal to the time of pre
agation multiplied byc). We can also notice a significant broadening of the pulse @
well as an asymmetry in its shape. This is induced by dispersive effects occurring
dielectric media [12] as well as in plasmas [13]. The WKB approximation is then we
adapted for study of these dispersive effects in plasmas with monotonic and smooth del
profiles.

3.2. Born Approximation

In typical fusion or ionosphere plasmas, the density profile presents significant fluct
tions so that the WKB approximation fails. In the case of small-amplitude density fluctt
tions, only the first-order term of the perturbation series can be kept. This hypothesis, ce
the Born approximation, allows an analytical evaluation of the phase shift for different tyy
of fluctuations [11, 14].

An example is considered for a linear density profilg£ 6 x 10*°m=3, R = 0.5m)and
a density fluctuation with a Gaussian shape, a wavenukyber 1.5 cn, an amplitude
as = dng/n. = 0.01, and a width at half amplitudé; = 10 cm. The initial pulse with
a frequencyf = 50 GHz and a width equal to 50 cm is reflected by a cutoff layer ¢
Xc = 26.25 cm. According to the Born approximation, the phase variation induced by t
fluctuations is given by [11]

Y2 8o p[_ (X — Xf)z] (14)

L
Ap = —ﬁ"°< ke ) o Coski (xe — Xy) + /4] ex D?
c f

whereky, 8ng, X, andn, are, respectively, the wavenumber in vacuum, the amplitude of tt
fluctuation, the cutoff-layer position, and the critical density. For a linear density profil
the gradient lengtly. is equal to the distance from the plasma edge up to the cutoff laye
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FIG. 2. Reflected pulse in the presence of density fluctuations with small amplitude computed by the pt
compression method using the Born approximation.

The total phase is then obtained from

¢ =¢+ Ad, (15)

where¢ is the phase given by the WKB theory for a density profile without fluctuatior
The pulse reflected by the plasma for the fluctuation poskioa: 26.25 cm and computed
by the pulse compression method using Eqgs. (14) and (15) is shown in Fig. 2. It is cl
that there is no significant deformation in the signal shape. In fact, the dominant physi
process is the oscillation of the cutoff layer. Consequently, a variation in the time of flig
(time between the initial and reflected pulses) should be noticed. As the time of flight
equal to the derivative of the phase with regard to the pulsation, this variation is obtair
by deriving Eq. (15):

(W) =

09" _ 99 L 389 _ )+ Arw). (16)
w w

dw
Let us notice that the time-of-flight variations are expressed as a function of the pul
tion w but it is equivalent to expressing them as a function of the fluctuation positio
We have thus determined the variations of the time of flight as a function of the dens
fluctuation position from the reflected signals computed by the pulse compression mett
The results compared to the tersr of Eqg. (16) are presented in Fig. 3. The very small
discrepancies between the analytical curve and the computed one are induced by the
merical method used to evaluate the time of flight. The good agreement shows the vali
of the pulse compression method using Born approximation in the case of density fluc

ations with small wavenumber. A limit of validity for the Born approximation is given in
Ref. [15].

3.3. Helmholtz Equation

In the case of density fluctuations with a large amplitude, the Born approximation
no longer valid. In that case, a computation of Eq. (1) is needed to evaluate the ph:
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FIG. 3. Time-of-flight variations as a function of the density fluctuation position: comparison between tl
theoretical expression of the Born approximation (full line) and the variations deduced from the pulses comp
by the pulse compression method (dotted line).

However monochromatic waves can be considered for each frequency component o
pulse spectrum. The time-dependent Eq. (1) can then be reduced to the following Helmt
equation:

2
{ ddX2 + ks Nz(x)] E(x) =0. (17)
A numerical code solving this equation has been developed [16]. The pulse compres
method can then be used from the phases computed by the Helmholtz code.

An example is shown for a linear density profitey = 6 x 10 m—3, R = 0.5 m) and
adensity fluctuation with a wavenumber = 18 cnt?, an amplitude; = éng/n. = 0.03,
and a width at half amplitudedi =8 cm. This fluctuation is located ax =
18 cm, where the Bragg backscattering condition is satisfied [17]. In such cases,
part of the wave is backscattered by the fluctuations. The reconstructed signal is 1
composed from a backscattered pulse and a reflected pulse. The successive pulse:
decreasing amplitudes are due to the multiple reflections of the wave between the 1
tuations and the cutoff layer, as shown in Fig. 4. From the positions of these differ:
pulses, we can deduce the amplitude and the time of flight for the first backscattered
the reflected pulsesdir = 0.37, aes = 0.85, t4if = 1.4 NS, e = 4.9 nS). The values of
time of flight are similar to those obtained theoretically in the case of a linear dens
profile.

4. DOMAINS OF VALIDITY OF THE PULSE COMPRESSION METHOD

The pulse compression method presented in this paper is efficient as long as Eqs
and (5) are valid. It amounts to saying that no nonlinear temporal effects play a role
the interaction between the wave and the plasma (in the opposite case, coupling bety
different Fourier components would distort the signal). We propose in this section to vel
the validity of the pulse compression method by comparisons with the time-dependent c
The improvements in times of computation are also shown and discussed.
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FIG. 4. Reflected pulse computed by the pulse compression method using the Helmholtz equation: the |
of a Bragg-resonant density fluctuation.

4.1. Study of the Validity in the Presence of Realistic Density Fluctuations

In order to validate the pulse compression method, we present here a simulation obta
from the time-dependent code in the same conditions as those presented in Fig. 4.
backward computed signal is shown in Fig. 5. We can see the good agreement with
reflected signal given by the pulse compression method. Let us just notice that a chang
the horizontal axis origin has been needed in Fig. 5. Indeed, the horizontal axis repres
the real space for the time-dependent code while it corresponds to the equivalent pa
vacuum for the pulse compression method.

Various comparative tests have shown that the pulse compression method gives re
identical to the time-dependent code (in the limit of the numerical scheme accuracy)
long as no cavity is present in the plasma. Indeed the presence of cavities induces
temporal phenomena of wave trapping which can lead to a discrepancy between the

E/E,

0 2 4 6
X (m)

FIG.5. Reflected pulse computed by the time-dependent code in the same case as presented in Fig. 4 (p
edge ax = 3.87 m).
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FIG. 6. Reflected pulse computed by the pulse compression method using the Helmholtz equation: the
of hole density in the vicinity of the cutoff layer.

methods (as discussed in the next section). In fusion plasmas for instance, some
ties could be induced by MHD-like as well as microturbulent density fluctuations. Ho
ever, the typical level of fluctuation in such media is rarely high enough to lead to tt
scenario.

4.2. Nonlinear Effects: Large Gaussian Density Hole

We consider now the case of a plasma with a density hole of amphtuee50% located
just behind the cutoff layer at; = 32 cm. The reflected signals computed by the puls
compression method and the time-dependent code are shown, respectively, in Figs. 6 a
In this case we can notice significant differences in the shape of the reflected signal. Th
induced by the presence of a subcritical cavity in the evanescent region of the wave.
part of the wave is trapped in the density hole, as shown in Fig. 7 (as the plasma re

0.4
0.2

0.0}

E/E,

~0.2}

~0.4 ]

0.5 1.0 1.5 2.0 2.5
X (m)

FIG.7. Reflected pulse computed by the time-dependent code in the same case as presented in Fig. 6 (p
edge ax = 2.18 m).
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corresponds ta > 2.18 m, the trapping occurs in the vicinity of the cutoff layer located a
X >~ 2.4 m). This process of wave trapping depends on the time and frequency compone
so the pulse compression method fails. Indeed, the Helmholtz code does not take
account the temporal aspect of the wave—plasma interaction in this case. Consequent
the presence of such temporal processes as wave trapping, the pulse compression m
will be no longer valid.

The dynamical phenomena of wave trapping depend on various parameters, namel
shape of the density profile and, in particular, of the cavity (amplitude, width, ...), as w
as on the wave frequency. The process of wave trapping is the strongest when the
duration is on the same order of magnitude as the transit time in the cavity. In the cas
a Gaussian cavity (as presented in Figs. 6 and 7) we have noticed that the discrepal
(evaluated from the differences in the signal amplitude) between pulse compression
time-dependent methods do not exceed 1% until a density fluctuation amplitude of 2(
The pulse compression method can then be used for various applications, implying fu:
plasmas.

4.3. Improvements in Computation Time

To emphasize the speed of the pulse compression method, we compare here the co
tation time with the time-dependent code. This is exemplified for a pulse propagating
a linear density profile. The incident frequency of this pulse is equal to 60 GHz and t
maximal plasma frequency is equal to 65 GHz. The pulse is then reflected by the pla:
at the positiork = R(60/65)? whereR is the plasma radius. The computations are carrie:
out using various plasma radii. The comparison between the pulse compression methoc
the time-dependent code is presented in Fig. 8 (a precision of 100 points per wavelel
has been chosen for both methods). We can notice that the larger the plasma radius
higher the improvement in computation time. For a plasma raRiss0.25 m, the pulse
compression method is about seven times faster than the time-dependent code while it
least 50 times faster fdR = 3 m.
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FIG. 8. Comparison of the computation time between the time-dependent code (square symbols) anc
pulse compression method (triangle symbols).
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5. DISCUSSION

The propagation of electromagnetic waves in plasmas presents humerous applicatio
the fields of thermonuclear fusion and ionosphere physics. The propagation of a wav
plasmas can rarely be solved analytically and numerical simulations are usually requi
Under the cold plasma approximation, we have proposed here a fast method for compt
the propagation of a pulse. The major interest of the pulse compression method is th
is incomparably faster than a code solving the time-dependent wave equation. Altho
this method can be no longer valid in severe conditions, such as those encountered il
presence of strong, localized perturbations (density holes), it is shown that it could be u
in typical fusion or ionosphere plasmas. It is for example well adapted for the study
microwave diagnostics in fusion plasmas.

The pulse compression method is valid for different modes of wave propagation as I
as the phase evaluation is correct. In the case of a magnetized plasma for example, it ¢
applied to the ordinary mode polarization as well as to the extraordinary mode polarizat
Let us just notice that it is particularly interesting for the extraordinary mode owing
the complex equations solved by a time-dependent code [18]. The main restriction of
pulse compression method is that it requires that the density profile be stationary on a1
scale much larger than the incident wave period. To study time-dependent phenom
more complicated methods based on the resolution of the full set of Maxwell equations
needed.
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